Publications
2024
Demir K.T., Logemann K, Greenberg D.S. Closed-Boundary Reflections of Shallow Water Waves as an Open Challenge for Physics-Informed Neural Networks. Mathematics.
Zinchenko, V. & Greenberg D.S. Combined Optimization of Dynamics and Assimilation with End-to-End Learning on Sparse Observations arXiv [preprent].
Sharma, S. & Greenberg D.S. SuperdropNet: a Stable and Accurate Machine Learning Proxy for Droplet-based Cloud Microphysics. arXiv [preprint].
2023
Huang, Y. & Greenberg, D.S. Symmetry Constraints Enhance Long-term Stability and Accuracy in Unsupervised Learning of Geophysical Fluid Flows. ESS Open Archive [preprint].
Arnold, C., Sharma, S., Weigel, T., Greenberg, D.S. :Efficient and Stable Coupling of the SuperdropNet Deep Learning-based Cloud Microphysics (v0. 1.0) to the ICON Climate and Weather Model (v2. 6.5). EGUsphere [preprint].
Schanz, T., Möller, K., Rühl, S., Greenberg, D.S. Robust detection of marine life with label-free image feature learning and probability calibration. Machine Learning: Science and Technology.
Rubbens, P., et al. Machine learning in marine ecology: an overview of techniques and applications. ICES Journal of Marine Science..
2022
Ramesh, P., Lueckmann, J.-M., Boelts, J., Tejero-Cantero, A., Greenberg, D.S., Gonçalves, P.J., & Macke, J.H. GATSBI: Generative Adversarial Training for Simulation-Based Inference. International Conference on Learning Representations.
2021
Nonnenmacher, Marcel, and Greenberg, D.S. Learning Implicit PDE Integration with Linear Implicit Layers. The Symbiosis of Deep Learning and Differential Equations, Conference on Neural Information Processing Systems.
Nonnenmacher, M. & Greenberg, D.S. Deep emulators for differentiation, forecasting, and parametrization in Earth science simulators. Journal of Advances in Modeling Earth Systems.
Lueckmann, Jan-Matthis, Boelts, Jan, Greenberg, David, Goncalves, Pedro, Macke, Jakob. Benchmarking Simulation-Based Inference. International Conference on Artificial Intelligence and Statistics.
Paasche, Hendrik, Gross, Matthias, Lüttgau, Jakob, Greenberg, David, Weigel. To the brave scientists: Aren’t we strong enough to stand (and profit from) uncertainty in Earth system measurement and modelling? Geoscience Data Journal.
2020
Tejero-Cantero, A., Boelts, J., Deistler, M., Lueckmann, J., Durkan, C., Goncalves, P., Greenberg, D., Macke, J. sbi: A toolkit for simulation-based inference. The Journal of Open Source Software.
Gonçalves, P. J., Lueckmann, J. M., Deistler, M., Nonnenmacher, M., Öcal, K., Bassetto, G., Chintaluri, C., Podlaski, W. F., Haddad, S. A., Vogels, T. P., Greenberg, D. S., & Macke, J. H. (2020). Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife.